
 

 

 

  

  

 

 

 

 

 

 

 

 

 

 

AI APPLIED TO FIBER OPTIC METROLOGY 
Data-Pixel, a Seikoh-Giken company 
 

ABSTRACT 

Automated cleanliness inspection of optical fiber endface is a critical and challenging vision task that can benefit 

from deep-learning enabled microscopes. This new technology revolutionizes the traditional inspection methods. It 

offers unmatched solutions to meet the production quality requirements and constraints of the fiber optic industry, 

whether they are covered by standardization rules or not. 
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THE IMPORTANCE OF CONNECTOR END-FACE CLEANING 

Networks are under constant stress with the incredible growth in demand for bandwidth, recently accentuated by 

the increase in teleworking (total international bandwidth tripled since 2016, according to Telegeography1, +35% in 

2020). In that context, the quality of connections is a critical requirement for the performance of optical 

communication networks. It remains the leading cause of fiber related downtime and failures in data centers or 

telecom applications. 

Cleanliness of end face terminations has a direct impact on connectors performances. Installing a compromised 

connector will contaminate or even damage the mating connector. 

With a core size of only 9 microns for single mode 

fibers, even a microscopic scratch, debris or any other 

contaminations can degrade the connection by 

blocking the light beam or creating airgaps that 

prevent physical contact. Low loss (IL) and low return-

loss (RL) connectors do not tolerate such 

contamination and won’t achieve the expected 

performance if not clean. 

Industrial standards for cleanliness 

Study by the International Electronics Manufacturing Initiative (iNEMI) has shown that contamination significantly 

increases insertion loss (up to 10 times), decreases return loss (up to 3 times), and increases Bit Error Rate Test 

(BERT) results (2-10 times)2. The analysis showed that scratches applied to the fiber mode-field diameter resulted 

in an increase of up to 25% of RL. 

The International Electrotechnical Commission (IEC) provides a standard defining the areas of focus and their failure 

criteria. Non removable defects are categorized into 2 groups: scratches and defects (non-linear features). 

Depending on their width and location, a specific number of defects inside each group is allowed. 

Compliance with the limit values defined by IEC 61300-3-35 Ed.2 guarantees the level of performance. 

Acceptance criteria for single mode connectors 

Zone Region Scratches Defects 

A: Fiber core 0 – 25 µm None None 

B: Cladding 25 – 115 µm 
No limit ≤ 3 µm 
None > 3 µm 

No limit ≤ 2 µm 

5 from 2 - 5 µm 
None > 5 µm 

 

While the IEC provides guidelines that aim to eliminate human subjectivity, counting, categorizing, and determining 

the size of each feature still leaves room for human error and inconsistency across manufacturing processes. 

 
1 https://blog.telegeography.com/internet-traffic-and-capacity-in-covid-adjusted-terms 
2 http://thor.inemi.org/webdownload/newsroom/Presentations/OMI/3.42BerdinskikhPaper.pdf 

Figure 1 Optical fiber core diameters 
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A DIFFICULT TASK FOR ‘TRADITIONAL’ INDUSTRIAL VISION 

Large inspection area — small features 

The challenge of endface inspection lies in the compromises faced by equipment manufacturers: microscopes need 

to be affordable, easy to use and keep a small form factor. At the same time, their optical system needs to capture 

a 300x300µm surface (single fiber connectors) or even a 3000x500µm (MT-24 multifiber) while maintaining a 

resolution small enough so that features of 1µm or less are not only visible but also reliably detected. 

Typical high-resolution microscopes on the market will offer a 10x to 20x optical magnification, providing images 

with a pixel size in the range of half a micron. The software will then feed this image to a specialized algorithm in 

charge of locating the fiber, detecting, and classifying the defects. Defects will greatly vary in term of shapes, color, 

and contrast. Shallow scratches only visible to the eye of the trained expert, needs to be consistently detected by 

the vision software. 

High sensitivity — even higher variability 

These low contrast features, which sometimes differ by only 1 or 2 grey levels (on a scale of 255 for 8bit images), 

require software engineers to design algorithms that can separate weak signal from noise, and trigger detection 

with a very high sensitivity. 

On the other hand, feature extraction cannot be too specialized, because 

contamination created in production and on the field comes in various colors and 

shapes. Different polishing processes will result in variable reflectivity, and 

microscopes will produce images with variable contrast. 

Inspection algorithms are pushed to their limits in such a way that they can report 

false positive or false alarm, i.e., defects that do not exist or belong to acceptable 

features. This can happen, for instance, with bend insensitive fibers that show 

white rings around the core, bright spots due to internal reflection or white 

boundaries that can often be seen around big defects. 

 

 
Figure 2 Example of faint scratches. 

From left to right: raw image, close-up, and detection result 
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DEEP-LEARNING TECHNOLOGY 

Deep-learning has been increasingly popular3 and successful in 

many fields, enhancing the pictures taken on our phones, 

guiding self-autonomous cars or helping medical diagnosis. Now 

the same class of algorithm is replacing manufacturing process 

like quality inspection where automated judgement is required. 

Machine learning or deep learning? 

Unlike traditional software where a vision expert is programming all the rules, machine learning (ML) is enabling a 

machine to learn from data: by feeding the algorithm data and providing a feedback loop, it will adjust iteratively to 

improve its accuracy. 

Deep learning (DL) is a subset of ML algorithms capable of mimicking the actions of the human brain through neural 

networks, hence the term Artificial Intelligence. The main technical difference lies in the fact that: 

• ML algorithms can process quantitative and structured data: numerical values. 

• DL algorithms can process unstructured data such as sound, text, or images. 

 

In the following sections, we will explain how software can extract meaningful information from images using 

convolution filters, the building blocks of any vision toolbox. We will then see that defect segmentation can be 

performed with deep learning techniques leveraging on those convolution filters. 

Feature extraction is the action of reducing the complexity of the data by using domain knowledge. In our field, it 

means writing a software algorithm that replicates expert techniques to pre-process data and make patterns more 

visible to vision algorithm. With deep-learning, feature extraction is performed by the model itself: the algorithm 

will be trained to output the key elements that will determine the prediction we want it to make. In computer vision 

this is typically the edge extraction, shape recognition, pattern detection, etc. 

During training the first layers of the neural network will naturally perform this task. The drawback is that it will 

requires many layers (hence the “deep”) for the network to be powerful. Having literally millions of parameters that 

 
3 Number of publications extracted from https://app.dimensions.ai and compiled in April 2021. 
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need to be optimized, deeper networks are harder to train and more computationally expensive, both when trained 

and used for prediction. 

Convolution & image analysis 

Convolution filters have been a tool of reference in image processing for decades. With images represented as 2D 

matrix of numbers (one value for each pixel), these filters, or kernels, are small matrix of weights that slides over 

the image and perform a local weighted sum, as illustrated in Figure 3. 

A basic kernel of 3x3 weight can blur or sharpen an image, perform 

edge detection, noise reduction, shape recognition, etc. Kernels are 

usually handcrafted by software developers, tailored to fit a specific 

problem. They can be stacked to solve more complex tasks, but it 

quickly becomes a nightmare to fine tune. 

Convolutional Neural Networks (CNN) came from the assumption 

that these kernels can be learnt automatically, allowing 

programmers to stack them at a much higher scale. 

CNNs are made up of neurons with learnable weights. Each of them is a small kernel filter which receives a small 

input matrix, performs a weighted sum over these numbers, pass it through an activation function and returns an 

output. The first layers of the network operate on a local neighborhood (because of their small 3x3 pixel size) but 

since these layers feed other layers of kernel filters, the deeper ones can construct a global representation of the 

full picture by assembling representations of each small parts in a pyramidal way. 

Semantic segmentation 

CNNs have become widely popular in the last ten years 

and showed outstanding performances in 3 different fields: 

• Classification: 1 image → 1 predicted class 

• Detection: classification with bounding boxes 

• Segmentation: 1 pixel → 1 predicted class 

 

At a low level, endface inspection consists in locating objects in an image i.e., marking each pixel as a defect, a 

scratch, or the background. This field of computer vision is called semantic segmentation4 and recent academic 

research has shown great contributions with very popular deep convolutional neural networks being published and 

becoming de facto the building blocks of all modern deep networks dedicated to object segmentation. 

Many models have been released within the common deep-learning frameworks (like Tensorflow or Pytorch) and 

experimenting with a few of them is best advised before one decides to develop a custom CNN. VGG, ResNet, 

MobileNet are some of the popular models which have shown high accuracy in the ImageNet5 recognition challenge, 

a popular benchmark. 

 
4 A Review on Deep Learning Techniques Applied to Semantic Segmentation - https://arxiv.org/pdf/1704.06857.pdf 
5 ImageNet dataset - https://www.image-net.org/challenges/LSVRC/ 

Figure 3 Matrix representation of a 
convolution 
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Figure 4 Comparison of popular CNNs accuracy and size 

A model is only as good as its training dataset  

One of the critical parts of any machine learning project is the available training dataset. Its size, content and quality 

will sometime determine which training techniques are possible. This step takes time, domain expertise and the 

right tools to collect, manage, sort, and label the pictures. 

Our initial approach was to define 2 classes (scratch & defect) and gather a representative dataset of endface 

pictures for which several experts agreed and labelled the location and class of all anomalies (ground truth). Each 

pixel of each image of the dataset has been assigned a class or defined as a background pixel. 

Training with labels is called supervised training. Another approach called unsupervised training only requires clean 

pictures, but it usually outputs imprecise heatmaps of defects and does not achieve the “pixel perfect” precision we 

need for endface testing. Once the training dataset is ready, the network can be trained. 

Training workflow 

Training a network is performed by running an optimization algorithm in charge of iteratively minimizing a cost (or 

loss) function: this function is a method of evaluating how well the algorithm models the dataset and predicts correct 

results. It is up to the data engineers to define the right loss function that will suit their use case. 

The training process starts by feeding the network with an image from our training dataset, then comparing the 

predicted segmentation with the correct labels. The mismatch between the prediction and the ground truth allows 

computation of the loss and results in a correction that is sent back through the layers of the network. 
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This back propagation will adjust the networks weights of the convolution filters. With each iterations, the loss should 

decrease as the network converges, eventually stopping the feedback loop when predictions are getting very close 

to the ground truth. Models with millions of adjustable weights typically requires thousands of iterations until they 

give acceptable prediction, this can take severeal hours of computation, even on modern optimised computers. 

 

Figure 5 Evolution of predictions of the network during training 

Inference 

Inference occurs when a previously trained model is fed with an image in order to generate a prediction. In our 

case, that is when our customers use it in production through Blink, our measurement software. 

The model defined earlier outputs 2 maps (see Figure 6): one for scratches, another for defects. Each of them will 

allow the post-processing software routines to locate, measure and count defects according to the IEC pass/fail 

criteria. 

 

Figure 6 The network receives an image from the microscope 
and produce heatmaps for each class of defects 

 

Figure 7 A zoom on the scratch heatmap shows the score of each pixel 

As shown in the Figure 7, these maps are not “black or white” binary images, for each pixel a defect score is obtained, 

correlated to its probability of being a defect of given class, according to the way the network was trained. It means 
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we can set a strict threshold (near zero) or relaxed (80% or higher) to segment our image. This allows the final user 

of the inspection software to adjust the level of sensitivity he would like to achieve for each product. 

 

 REPLACING THE HUMAN EYE 

Retraining for special use cases 

While traditional handcrafted kernel filter is challenging to readjust and overcome false positive or undetected 

defects, deep-learning CNNs can easily be retrained on a dataset featuring these new special cases. We have been 

successful learning new types of defect that are not defined by the IEC guidelines like unpolished or broken fiber, 

core cracks or fiber chips. 

On the other hand, unexpected variation that can cause false positive were easily retrained including saturated 

bright cores, partially filled cladding and bend insensitive fibers cladding. 

Core crack

 

Broken fiber

 

Unpolished 

 

Chipped fiber

 
Good, annular reflection 

 

Dirty bend insensitive 

 

Good, core reflection

 

Good
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Fast and repeatable measurements 

Deep learning is known for being a computationally intensive task requiring 

fast computers. While our implementation will benefit from latest processors 

and graphic cards (GPUs), it will also run on any standard, recent computer. 

Measurement speed does not show any degradation over standard image 

processing techniques: inspecting a typical MT-12 fibers connector takes less 

than 4 seconds6, including autofocus and image acquisition. An MT-24 can be 

scanned and processed within 5 sec. This is substantially faster than visual screening by an operator who needs to 

carefully scroll through the fibers and assess them one by one, while making sure he doesn’t miss one of them. With 

a typical screening time of 1sec/fiber, automated devices can bring a 3x speed improvement. 

 

Figure 9 All in one view showing all inspected fibers simultaneously. 

A fast measurement is only worth if it is correct and reproducible. Such a reproducibility study has been performed 

on several connectors selected for their representative defects. All connectors were measured 25 time with 

reinsertion. Our conclusions are as follows: 

- For defects from 4µm to 10µm, the standard deviation of measurement is 0.2µm. 

- For scratches & defects < 4µm, the standard deviation of measurement reaches 0.1µm. 

Comparing this to human repeatability is tricky, partially because humans memorize and recognize defects when 

they see them multiple times. Although we are not aware of any published study, feedback from the industry shows 

it will be strongly affected by: 

- Training level 

- Illumination and focus adjustment 

- Display-screen contrast and resolution 

New tools for connectors manufacturers — upcoming applications 

Because deep-learning vision algorithm are trained rather than programmed, any new vision challenge can be 

tackled by building a new dataset of pictures and their corresponding ground-truth labels. With this approach, Data-

Pixel has developed automated inspection devices for the full endface of MT ferrules, observed at low magnification, 

a capability unparalleled on the market. 

Due to the high variability of materials and polishing process, the pictures taken by microscope show a high 

variability in their texture, as shown in Figure 10. 

 
6 Benchmarks performed on an Intel i9 processor and a Nvidia GeForce 2070 graphic card 

Figure 8 Total scanning time 

Type 
Fiber 

screening 

+ Endface 

view 

MT12 4 sec. 6 sec. 

MT24 5 sec. 7 sec. 
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Figure 10 Stitched images of 4 MT ferrules with variable aspect 

With the help of defect scores generated by the deep-learning model, customers can easily adjust the 

sensitivity of the inspection software. They can easily set a threshold on the size and surface of the 

defect and have the software automatically accept or reject. 

Such a feature is an absolute requirement for vision tasks that are still not 

standardized but for which inspection is already performed at several steps on 

the production line or on the field. 

CONCLUSION 

All the advantages of deep-learning automated inspection show that automatic fiber end-face testing is now the 

most successful way to certify compliance with the IEC requirements. This significantly improved reliability is 

achieved without sacrificing speed and allows handling of new images or defect types through re-training. 

Being trained with examples instead of being programed with rigid feature definitions, deep-learning vision enables 

inspection not only on standardized and well-defined defects/products but also on customer’s own acceptance rules: 

it just requires them to provide pictures of good and bad connectors. 

Within the world of optical interfaces, this new generation of software makes it possible to automate vision on large 

core fibers with varying cladding size and aspect, multicore fibers or crystal-photonic fibers, connectors with micro 

lens, etc. 

The learning capacity of these AI based software is a continuous ongoing process without any limitation. We have 

seen in this paper the tremendous benefit it already brings and how it will continue to satisfy new quality requirement 

of the industry related to fiber optic endface inspection. 

Figure 11 Data-Pixel DScope EFI 

■ excluded areas (pins) 

■ acceptable defects 

■ critical defects 
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